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Abstract 

We show that on a non isotrivial family of abelian varieties over a smooth complete curve 
effective relatively ample divisors are strictly nef. @ 1998 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

1.1. Let 7~: d tB be a family of abelian varieties over C of relative dimension g 

over a smooth projective curve i.e. d and B are complex smooth projective varieties 

of dimension g + 1 and 1, n is a proper smooth morphism such that Ab = z-‘(b) is 

an abelian variety for all b E B. 

The main result of this paper is that if R : d + B is not isotrivial then an effective 

relatively ample divisor must intersect any curve (Corollary 4.5). Moreover, if the gen- 

eral fiber is simple then any two subvarieties, of complementary codimension and not 

contained in fibers, have a non-zero intersection number (Corollary 4.6). Here, since the 

base B has dimension 1, general fiber means Ab, for b E B outside a countable set of B. 

We will give two independent proofs of the main result. A basic ingredient of both 

the proofs is the action of Z on the rational cohomology and the rational Chow ring 

of an abelian scheme; see Sections 2 and 3. 

The first proof of the main result is in Section 4 where we obtain it as a corollary 
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Theorem 4.3. Let x: d 4 B be an abelian scheme of dimension g over a smooth 

projective curve B, with zero section e. Let L be a relatively ample line bundle 
on d. If deg(q(L) . e(B)) <(i)degcl(od/~) then L is not effective. 

The proof of this theorem is based on the Grothendieck-Riemann-Roth Theorem 

and on a result of Mumford on n*L. 
The second proof of the main result, given in Section 5, has a more differential 

geometrical flavor. With a local %?’ trivialization we show that a relatively ample 

divisor 9 must intersect the n-torsion locus d[n] c d for infinitely many n E N. Since 

the class of &[n] in the Chow group of d is a non-zero multiple of the class of 

the zero section (see Remark 3.2), the main result follows provided that not every 

irreducible component of &[n] which meets 3 is contained in 9%“. To exclude that 

possibility we use a theorem of Raynaud on the finiteness of the number of torsion 

points on subvarieties of abelian varieties and an argument which shows that we may 

assume the general fiber of & to be simple. 

2. Action of multiplication by integers on the cohomology 

2.1. Let rc : d + B be an abelian scheme over C of relative dimension g over a smooth 

connected projective variety B of dimension d, with zero section e : B + &. 

2.2. Multiplication by k : d 4 d (k E Z) induces maps 

k* : HP(B, R”n*Q) -+ H*(B, R’n*Q) and k* = k’, 

that is, multiplication by the scalar k’. Combined with the Leray filtration, this gives 

a canonical decomposition: 

min{n,%I 

H”(d, Q> = 03 H”-‘(B, R’x*Q). 
i=max{O,n-2d) 

Thus, any Z E H”(sZ, Q) can be written as 

min{n,2g} 

z= c Zn-i with k*Zn_i = k’Z,_i 
i=max{O,n-2d) 

and Zn_i E H”-‘(B, Rin*Q). 

(2.2.1) 

2.3. Remark 
1. For n = 2d and i = 0 one has H2d(B, 7c*Q) N H2d(B, Q) 2! Q and the class [&I 

of a fiber is a basis (note k*Ab =Ab). 
2. For n=2g+2d, H 2g+2d(&,Q) = H2d(B, R2g7c*Q) N Q and the class of a point 

is a basis. 
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3. For IT = 29, H”(B,R2%*Q) N H*(B, Q) N Q. The class [e(B)] of the zero section 

is a basis of H”(B,R2grr*Q), (in fact, since k*e(B) = e(B), from k*k* = k2gid it follows 

that k*e(B) = k2ge(B)). 

4. For the same reason also the class of the m-torsion locus, [&[m]], lives in 

H”(B,R2gx*Q), for any m E N. So in particular it is a positive multiple of [e(B)]. 

2.3. Remark. The cup product gives a duality between the spaces H”(&‘,Q) and 

H2g+2d-n(zZ, Q) with the property 

(k* W . k*Z) = k*( W . 2) = k2g( W. 2). 

Thus, if we decompose W = ci 4, Z = c,Zj as in (2.2.1), we get 

(&.Zj)=O if i+j # 2d. (2.4.1) 

In particular, since [e(B)] = [e(B)]0 E H2g(d, Q), for any Z E Hzd(d, Q) we have 

([@)I .Z) = ([e(B)1 .Z2d). 

Note that Z2d f HZd(B,Ron*Q) is a multiple of [A& 

(2.4.2) 

3. Action of multiplication by integers on the Chow ring 

3.1. Let rc: a? -+ B be an abelian scheme as in 2.1. By Fourier theory on abelian 

schemes [2, Theorem 2.191, we have the following decomposition of CHp(_&‘), = 

CHJ’(aZ) @ Q in eigenspaces for the multiplication by k: 

Min(2p, p+d) 

CHp(&)~= @ CHp(4s with k”Z, = k2P-“Z, 

s=Max(p-g,2p-2g) 

for Z, E CHJ’(sZ),. Thus, any cycle can be written as 

Z = c Z, E CHp(&)~ with Z, E CHp(d)s. 

3.2. Remark. The Fourier transform gives an isomor-phism (cf. [2, 2.18. v]) 

9 : CHf’(&‘), -+ CHg-p+s(~)s, 

in particular for p = g, CHg(&)o N CH*(SI)O. Note that e(B) E CHg(d)4)0 (cf. Remark 

2.3.3) and because CHO(&)Q = CH’(sz’)o = Q&, one has 

CHg(d)o = Qe(B). 

In particular, this implies that the m-torsion locus &‘[m] is a (positive) multiple of e(B) 
in CHg(&)Q, generalizing to the level of Chow groups the result in Remark 2.3.4. 

This property was already observed by Looijenga in [4]. 
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3.3. Remark. The intersection product in the Chow ring satisfies 

For p = d and p + q = g + d with d 5 g, we have the decompositions CHd(d)~ = 

@id_, CHd (~4)~ CHg+d (Se), = @id CHgfZd (~4)~. Thus, the intersection product 

of e(B) E CHg(d)o with any Z = C, Z, E CHd(d)~ is actually given by 

(e(B). z) = (e(B) . Z2d ). (3.3.1) 

3.4. Lemma. For an abelian scheme 71: sd + B as in 2.1, with dimB = 1, we have 

CH’(&)Q = CH1(~)o $ CH1(@‘), @ CH’(JY)~, 

SO CHl(s%‘), = 0 for s < 0. Moreover, 

CH’(Se)2 = 7r*Pic(B)Q. 

Proof. We use the exact sequence 

O-+Pic”(d)+CH1(d)+NS(d)+O 

which implies that 

Since Ns(d)Q C H2(d, Q), the Net-on-Severi group can be decomposed as follows: 

lf’??(d)Q =N&, @I?%1 @I%$, NSi =NS(d)Q f~ H2-‘(B,Ri~*Q). 

Hence NS, = 0 for s ~0. Using Remark 2.3.1 we find 

NS2 = Q[&] = z*H2(B, Q). (3.4.1) 

Now we consider Pic’(d)Q. Let r : d’ -+B be the dual abelian scheme. Then an 

element of .&$‘(B), the group of sections of z, is an isomorphism class of line bundles L 

on .& with e*L 2 0~ and whose restriction to each fiber of rc is algebraically equivalent 

to zero (see [3, p. 21). Therefore, we have 

Pic’(d)Q C sY(B)Q @ 7L*f?c”(B)Q 

and this decomposition is stable under k*. We first show that 

&‘(B)Q = d’(B)0 @ s?(B)1 with k*Z s = k2-‘Zs 

for Z, E A&(B),. 

Let L be a line bundle on A! which corresponds to an element in d(B) and 

whose class cl(L) E ~‘(B)Q satisfies cl(L), = 0 for s = 0, 1. The inclusion of a fiber 

Ab of rc into z2 is equivariant for multiplication by integers and CH’(Ab)Q = CH’(Ab)O 

@ CH’(Ab)l. Thus, the restriction of q(L) to each fiber is trivial. Therefore L@‘“, 
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for some n >O, restricts to 0,,* for all b E B. By functoriality of ~2’ (in particular, 

(~2’)~ = (Ab)* =Pic”(&)), the sections of r corresponding to L@” and 0d must then 

be the same. Therefore L @n Z 0d and thus q(L) = OE &‘(B)Q. We conclude that 

SZ?‘(B)~ = 0 if s # 0, 1. 

Since n o k = 72 we get k*n* = I?, hence 

7~*Pic(B)~ c CHl(&)z, (3.4.2) 

and the first result is proved. 

Using the argument above, we just need to show x*Pic(B)~ > CHl(&)z to get the 

second result. The decomposition of CH’(LZZ)Q given above shows that CH1(&)2 c 

NS2 @ 7c*PicO(B)~. We already observed that AG’2 = x*H2(B, Q) c n*Pic(B)q. Thus, 

the second result follows. q 

4. The first proof 

We need the following two lemmas. 

4.1. Lemma. Let n: d + B be an abelian scheme of relative dimension g over a 
smooth projective curve B, with zero section e. Let L’ be a relatively ample line 

bundle satisfying e*L’ 2 Co,. 
Then there is a line bundle A4 E Pit(B) such that 

n*L’ 5% V @c M 

where V is a vector space. In particular, 

dimH’(B,n*L’)=r dimH’(B,M) and q(n*L’)=rq(M), 

where r := rk(n*L’), the rank of n*L’. 

Proof. Note that x*L’ is a vector bundle, because L’ is relatively ample. The hypothesis 

e*(L’) 2 0~ is the “normalization condition” which implies that the vector bundle n*L’ 

is an antirepresentation of the group scheme Y(L’), defined in [6, Section 61, which 

generalizes the Heisenberg group. The lemma then follows directly from Proposition 2 

in Section 6 of [6]. q 

4.2. Lemma. Let n: d --) B be an abelian scheme of relative dimension g over a 
smooth complete curve B, with zero section e. Let L’ be a relatively ample line 
bundle with q(L’) = q(L’)o E CH’(d)o. Then 

degq(n*L’)= - (rkx*L’/2)degcl(od/B), 

where m&/B = det(e*(n,,B)). 
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Proof. The proof is obtained from the Grothendieck-Riemann-Roth Theorem (GRR): 

ch(TQL’) = 7r*(ch(L’) - td(l.$$)) 

by considering k*L’ instead of L’. The computation below is copied from [5, 

Appendice 21. 

Since Q$$ = n*e*(Q$$,), where e*(C$$) is the Lie algebra bundle associated to 

d --+ B, we can rewrite GRR: 

ch(7qL’) = n*(ch(L’)).td(e*(Q$$)). 

Since L’ is relatively ample, we have z!L’ = QL’. We only consider the codimension 

0 and 1 parts of GRR: 

rk7c*L’ = 7c*(cl(L’)g)/s!, 

c1(71*L’)=7E*(c*(L’)g)/g! .c*(o$79)/2 + n*(cl(L’)g+‘)/Q + I)!. 

Substituting the first formula in the second gives 

c,(Q’) + (rkn*L’)c&od,B))/2 = x&(L’)g+l)l(s + I)!. (4.2.1) 

We will prove that both sides of (4.2.1) must be zero by showing that, upon replacing 

L’ by k*L’, the 1.h.s. of (4.2.1) is multiplied by k’s but the r.h.s. by k2g+2. 
For the 1.h.s. note that also k*L’ is relatively ample with rkx*k*L’= k2g(rkn*L’) 

and, since n* k* = 7~* and k* k* = k2gid, 

q(n*k*L’)=q(x*k*k*L’) ==k2gc,(~*L’). 

Hence 

(rkx*k*L’)q(od,B)/2 + c,(n*k*L’) = kZg(rkn*L’)c1(q&2 + cl(~L’)). 

Let us look now at the r.h.s. The hypothesis cl(L’)==cl(L’)o is equivalent to 

q(k*L’) = k2cI(L’) so 

n4c4k*L’)g+‘)/(g + l)! = k2~+2x&(L’)~+1 )/(g + I)! 

as required. 0 

4.3. Theorem. Let 71: d --+ B be an abelian scheme of relative dimension g over a 
smooth projective curve B. Let e be the zero section and let L be a relatively ample 
line bundle on ~2. If 

deg(cl(L).e(B))<$degc~(OJBIB), 

then L is not efective. 

(4.3.1) 
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Proof. Let q(L) = ci(L)s+ci(L)i +ci(L)~ be the decomposition of cl(L) in CH’(&‘)Q 

with k*q(L)i =k2-‘ci(L)i (so in particular (-l)*ci(L)i = (-1)2-‘ci(L)i). We define 

the line bundle 

Ls:=L@(-l)*L. 

The decomposition of cl (Ls) is 

Cl(b)0 = 2Cl(b)O, Cl(h)1 = 0, Cl(&)2 =%(J5)2. 

Thus, by Remark 3.3, it follows from the hypothesis (4.3.1) that 

&(cl(G) . e(B)) = hd2cl(~)2~ e(B))< $k7cl(adp). (4.3.2) 

On the other hand, if Ls is not effective, i.e. H”(&, Ls) = 0, then H’(d,L) = 0, i.e. L 

is not effective, so we just need to show that Ls is not effective. 

We now consider the line bundle L’ on d defined by 

L’ := LS 63 7c*e*L;l 

It satisfies e*L’c 0~. Moreover, since L is relatively ample, so are Ls and L’. We 

show that cl(L’)l = ci(L’)z = 0. 

Note that cl(n*e*Li’) E x*Pic(B)~ = CH’(&Qh (by Lemma 3.4), thus cl(L’)i = 

cl(Ls)i for i = 0, 1. Therefore also cl(L’)l = 0. Moreover, writing cl(Ls)2 = TC*D 

with D E Pit(B) we have, using Remark 3.3 and the projection formula 

e*Ls = ~~*(cl(Ls).e(B)) = 7r*(ci(Ls)2. e(B)) =D. 

Thus, n*(e*Ls) ==cl(Ls)~ and so ci(L’)2 = 0. 

We have to show H’(&, Ls) = 0. Using Ls = L’ 63 #e*Ls we have 

H’(zZ, Ls) = H’(B, n*(L’ @I z*e*Ls)) = H’(B, (n*L’) 8 e*Ls). 

Applying Lemma 4.1 to L’ we get n*L’ c V @CM and 

H’(&‘,Ls)= V@H’(B,M@e*Ls) with q(~~*L’)=r.cl(M). 

Using deg(e*Ls) = deg(cl(Ls) . e(B)) and 

&(ci(=J’))= - (r/2)&(ci(w.+9)) 

(Lemma 4.2), we find that the degree of the line bundle M@e*Ls on B is 

deg(M @ e*Ls) = - $eg(ci(%qB)) + deg(ci(Ls) . e(B)), 

hence H’(d,Ls)=O if deg(cl(Ls).e(B))<~deg(cl(w~,~)). 0 

4.4. Corollary. Let n : d + B be a non-isotrivial family of abelian varieties of relative 

dimension g, over a smooth projective curve B, and L a relatively ample line bundle. 
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If L is effective then for any curve C in d 

deg(q (L) . C) > 0. 

Proof. If C C&, a fiber of rc, the statement is true because Lb is ample. If not, 

rt restricts to a surjective map C -+ B. Let C be the desingularization of C and let 

p : e + B be the map induced by rc. Let di := d xs C be the base change: 

Then rri has a tautological section e. Defining e to be the zero section, rci : _&‘I 4 C? is 

an abelian scheme. We have 

deg(c~(P*L)~e(C))=deg&(p*q(L)~e(C))=deg(cl(L)~ C). 

Note that if L is relatively ample and effective then so is b*L. Now we apply 

Theorem 4.3 to c*L and obtain 

deg(q(t?*L). e(C))>O, 

since deg(ci(odl,c))>O because rc, and thus rci, is not isotrivial. 0 

4.5. Corollary. Let 7t : d + B be a non-isotrivial family of abelian varieties of relative 

dimension g over a smooth projective curve B. Let d be an effective relatively ample 
divisor on Se and let C be a curve on d. 

Then 

CrlS#0. (4.5.1) 

Proof, The statement is weaker than the one in Corollary 4.4. 0 

4.6. Corollary. Let n : d --+ B be a non-isotrivial family of abelian varieties of relative 
dimension g over a smooth projective curve B, whose general fiber is simple. Let 
ZF’l(resp. 9’2) be an efhective cycle of codimension p (resp. g + 1 - p) not contained 
in a fiber. Then 

deg(?Z’l .S@z)>O. 

Proof. After a change of base we may assume that rc is an abelian scheme (see the 

proof of Corollary 4.4). The condition deg(S?l .2&) > 0 is equivalent to 

deg((% * (-l)*%).e(B))>O, 

where * is the Pontryagin product. 
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By construction, the divisor ZZi * (- I)*91 is effective and is not contained in a 

union of fibers. Under base change the general fiber does not change and effective 

divisors on simple abelian varieties are ample. By a rigidity argument it follows that 

9’1 * (- 1 )*ZZ is relatively ample. Thus, the result follows from Corollary 4.4. 0 

5. The second proof 

5.1. Let rt : d -+ B and 9, C c s? be as in Corollary 4.5. 

If C is contained in a fiber Ab := n-‘(b) for some b E B the result follows since % 

is relatively ample. 

Otherwise, as in the proof of Corollary 4.4, we obtain an abelian scheme (which 

we again denote by rc : d -+ B) with zero section e and an effective, relatively ample 

divisor (again denoted by 9’) and we must show that e(B) n 9‘ # 0. 

5.2. We show that we only need to consider the case in which the fiber kfb of rr, for 

b E B general, is simple. 

In fact, if this is not the case, there is a finite map p : B’ -+ B and a diagram 

id ! i x 

P 
B’ -B 

where 9 xst ‘9 is the fiber product of two families of abelian schemes of relative 

dimensions f and g - f and p” is surjective. We may assume that F + B’ is non- 

isotrivial with simple general fiber. 

Let eg and eg be the zero sections of F and 9, then e := (eF,eg) is the zero 

section of 9 xs’ 9. We have 

LT”ne(B’) if and only if p”*fZne’(B’)#@ 

We have the canonical inclusion 

i9 : 9 % 9 XB’ eg(B’) C 9 XBJ 3. 

Note that i;p*T is an effective relatively ample divisor on F-. Moreover, 

igp”*% 17 eF(B’) = ig(p”*aO n e’(B’)) = igp”*(Z n e(B’)), 

hence it suffices to show that igb*kY n eF(B’) # 0. 

5.3. If e(B) c 3, e(B) f’ E = e(B) # 0, otherwise e(B) n 9’ is a (finite) set of points. 

Since the cycles involved are effective, we must prove that 

deg(Z . e(B)) > 0. 
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We show that our result follows from Proposition 5.4 below. By Remark 2.3.4 we 

have 

deg(S? . e(B)) > 0 if and only if deg(9. &[n]) > 0, (53.1) 

where &‘[n] is the cycle of n-torsion points. 

Note that &[n] could have several irreducible components and some of them could 

be contained in S!?“, so the computation of the intersection number can be difficult. How- 

ever, we may assume that the fiber Ab of rc, for b E B general, is simple (see 5.2). In 

particular, 3 rl A6 does not contain a translate of an abelian subvariety. A fundamental 

theorem of Raynaud [7] then shows that the number of the torsion points contained in 

9nAb is finite, i.e. 

In particular, the number of components of the torsion locus contained in d is finite. 

Now Proposition 5.4 asserts that there are infinitely many n such that &‘[n] n 22’ is 
non-empty. Therefore, there are still infinitely many n for which .@‘[n] n 3 is a finite 

number of points. Since the cycles involved are effective one has deg(% . ._&‘[n]) >O 

for such n, hence deg(%.e(B))>O by (5.3.1). 

5.4. Proposition. Let 71: d--B be a non isotrivial abelian scheme over a smooth 
projective curve B, with simple general jiber. Let 3 be an eflective divisor on d. 

Then there exists an injinite subset I of N such that 

2 n &[n] # 0 for all n E I. 

Proof. By definition 

d =R’n*C/(F-’ $R’n*Z), 

where R’n*Z is the local system with (I@Tc*Z)~ =H’(Ab, Z) corresponding to the first 

derived functor, R’I-c*K = R’n*Z @K, for K = Q, R, C, the associated K vector bundle 

and 9-l is the Hodge bundle. Over a point b this is just the definition of abelian variety 

Ab = H’(& c)/(@“(Ab) @H’(& z)). 

Moreover, there is a %F isomorphism 

corresponding to the isomorphism H’(&R) ?H’(Ab, C)/H’,‘(Ab). So we have the 

diagram 

(5.4.1) 

where AR an Ic are the projections. Note that, by construction, $Z = $Z n R’rt*R. 
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Let U be a contractible open neighborhood of a general point bo E B. Then over U 

we have the following trivializations: 

!&:R1n*R%H1(Abo,R) x U and Y/c:R1z+CzH1(Ab,,,C) x U. 

We denote by p1 (any of) the projections onto the first factor. Then we have the maps 

@~:=plY&R1rc*R--tH1(Ab,,,R) 

and 

Clearly Ye, @c are holomorphic, while YR, fi are Wm. We denote by 3~ (resp. 

3~) the restriction to U of the pullback A,*%? (reSp. ngz) and sR,b :=lg(%flAb) 

and 2c,b := A:(% fl&). By (5.4.1) it follows that 

The proposition follows from the following claim. 

Claim. @R(%R) contains an open subset of the vector space H’(Abo,R). 

Indeed, the claim implies that &(ZR) I- H’(&, Q) contains an open subset of 

H’(Ab,,, Q). Since H’(.&, Z) is discrete in Hl(Ab,,, Q), this means that 3 intersects an 

infinite number of torsion points of J&? (these torsion points are ( @R(~R) n H’(&, Q))/ 

H’(&, z)). 
To prove the claim we note that dimn 2~ = dimn H’(&R) = 29. Thus, we just 

need to prove that the differential of @RIZR has maximal rank 2g somewhere. First we 

will check this rank condition for the holomorphic map GclZC and later we will see 

that this implies the real case. 

We will argue by contradiction. If the rank of QiclrC is no where maximal, then all 

the fibers of @clzC have positive dimension. Since dime @c(%c,b) =2g - 1 

for all b E U, all the Tc,,b have the same image, i.e. 

‘yC(TC) = @C(f%,bo) x u = TC,bo x u. 

Since d is not isotrivial, the vector bundle 4: is not flat. In particular, 

Pod@C(q~))#o> 

with pal : H1(Abo,C)+H1,‘(Ab,) the projection, so we can find a vector space 

W c @(F,b) with pol( W) # 0. 

Take now zo E Tc,b,, and let Z := Y;‘(zo x U), a section of 3’~. Since &j’@?(b)) = 

Z(b) + H’,‘(Ab) + H’(Ab, z), the translate 

r@$, = {Z(b) + H1’o(Ab)}b~U 
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is contained in 9~. So 

ZO + w CZO + @C<q:)= @C(%$r> c @C(-%,bo)= TC,b,. 

This means that the analytical subvariety %o,bo of H’(Ab,,, C) contains the affine space, 

zo + W, and POI(ZO + WO) # 0. 

Then Izc(zs + W) c Abe is not a point, so its closure has to be a positive dimensional 

torus, contained in !Z flAbo. But this torus has an infinite number of torsion points. 

Hence Raynaud’s theorem, which we recalled in 5.3, would imply that 9 nAbo contains 

the translate of an abelian variety, in contradiction with the hypothesis that AbO is 

simple. 

Now we prove the rank condition for $14. We know that the locus where the 

rank of @+F~ drops is a complex subvariety Sing(@clz=). If the differential of @ales 

has nowhere maximal rank, then @R(ZZR) C @c(Sing( @clzc )) n H’(&, R). Moreover, 

the fibers of QRizR must have positive dimension. Thus, they will be in an union 

D of irreducible components of Sing(Qc19=) where also @clzc has fibers of positive 

dimension. Then, in particular, dime @C(D) < 2g - 1. So dimn @R(%R) < 2g - 1, because 

the real part of a complex analytical variety of complex dimension n has real dimension 

5 n. Then dimn &(ZZ’~) = dimn @R(%R,b) = 2g - 2, for all b E U. But this implies that 

the real parts of the images by @C of 9 C,b are the same for all b E U, so these images 

must be equal and we saw above that this is impossible. Cl 
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