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Abstract

We show that on a non isotrivial family of abelian varieties over a smooth complete curve
effective relatively ample divisors are strictly nef. (© 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

1.1. Let n: o/ — B be a family of abelian varieties over C of relative dimension g
over a smooth projective curve i.e. &/ and B are complex smooth projective varieties
of dimension g+ 1 and 1, = is a proper smooth morphism such that 4, =n~1(b) is
an abelian variety for all b€ B.

The main result of this paper is that if 7:./ — B is not isotrivial then an effective
relatively ample divisor must intersect any curve (Corollary 4.5). Moreover, if the gen-
eral fiber is simple then any two subvarieties, of complementary codimension and not
contained in fibers, have a non-zero intersection number (Corollary 4.6). Here, since the
base B has dimension 1, general fiber means 4,, for b € B outside a countable set of B.

We will give two independent proofs of the main result. A basic ingredient of both
the proofs is the action of Z on the rational cohomology and the rational Chow ring
of an abelian scheme; see Sections 2 and 3.

The first proof of the main result is in Section 4 where we obtain it as a corollary
of:
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Theorem 4.3. Let n:5/ — B be an abelian scheme of dimension g over a smooth
projective curve B, with zero section e. Let L be a relatively ample line bundle
on . Ifdeg(cl(L)'e(B))<(%)degc1(w&¢/B) then L is not effective.

The proof of this theorem is based on the Grothendieck—Riemann—Roch Theorem
and on a result of Mumford on 7«L.

The second proof of the main result, given in Section 5, has a more differential
geometrical flavor. With a local ¥°° trivialization we show that a relatively ample
divisor & must intersect the n-torsion locus .«/{n] C &/ for infinitely many n € N. Since
the class of «/[n] in the Chow group of &/ is a non-zero multiple of the class of
the zero section (see Remark 3.2), the main result follows provided that not every
irreducible component of &/[n] which meets % is contained in &. To exclude that
possibility we use a theorem of Raynaud on the finiteness of the number of torsion
points on subvarieties of abelian varieties and an argument which shows that we may
assume the general fiber of &/ to be simple.

2. Action of multiplication by integers on the cohomology

2.1. Let n: o/ — B be an abelian scheme over C of relative dimension g over a smooth
connected projective variety B of dimension &, with zero section e: B — .«/.

2.2. Multiplication by k: o — o/ (k€ Z) induces maps
k* :HP(B,R'n«Q)— HP(B,R'nxQ) and k*=FK,

that is, multiplication by the scalar k’. Combined with the Leray filtration, this gives
a canonical decomposition:

min{n,2g}

H'(#,Q= P H(BR«Q).

i=max{0,n—2d}
Thus, any Z € H"(=/,Q) can be written as

min{n,2g}
Z= > Zny with K*Z,_;=kZ,_; 2.2.1)
i=max{0,n—2d}

and Z,_; € H"/(B,R'nxQ).

2.3. Remark

1. For n=2d and i=0 one has H*(B,n+Q)~H?*(B,Q)~Q and the class [4}]
of a fiber is a basis (note k*4;, = 4;).

2. For n=2g + 2d, H**%(o/,Q)=H*(B,R¥1+Q)~Q and the class of a point
is a basis.
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3. For n=2g, H*(B,R¥n+Q)~H%B,Q)~ Q. The class [e(B)] of the zero section
is a basis of H(B, R¥n4«Q), (in fact, since kxe(B) = e(B), from kxk* =k%¥id it follows
that k*e(B) = k*e(B)).

4. For the same reason also the class of the m-torsion locus, [/[m]], lives in
H%B,R¥14Q), for any m € N. So in particular it is a positive multiple of [e(B)].

2.3. Remark. The cup product gives a duality between the spaces H"(«/,Q) and
H?9+2d-n( of Q) with the property

K*W -k*Z)=k*(W - Z)=k»(W - Z).
Thus, if we decompose W=}, W;, Z=3_,Z; as in (2.2.1), we get

(Wi-Z,)=0 if i+j# 2d. (2.4.1)
In particular, since [e(B)] = [e(B)]o € H*(,Q), for any Z € H*¥(o/,Q) we have

([e(B)]-Z) = ([e(B)]- Z2a)- (24.2)
Note that Z; € H*(B,R%7+Q) is a multiple of [4,].

3. Action of multiplication by integers on the Chow ring

3.1. Let n: ./ — B be an abelian scheme as in 2.1. By Fourier theory on abelian
schemes [2, Theorem 2.19], we have the following decomposition of CH?()g=
CHP(«/) ® Q in eigenspaces for the multiplication by &:

Min(2p, p+d)
CHP(of ) = &P CHP(of)s with k*Z,=k¥~°Z,
§=Max(p—g,2p—29)

for Z; € CHP(sf );. Thus, any cycle can be written as

Z=Y Z,eCH! () with Z € CHP(/);.

3.2. Remark. The Fourier transform gives an isomorphism (cf. [2, 2.18. v])
F :CHP(o); — CHI P (L),

in particular for p=g, CH9(a )y~ CH®(o/ )o. Note that e(B) € CHI(o/ )y (cf. Remark
2.3.3) and because CH(/)q = CH(/ )y =Q.#Z, one has

CHY( s )o = Qe(B).

In particular, this implies that the m-torsion locus «/[m] is a (positive) multiple of e(B)
in CHY9(4/)q, generalizing to the level of Chow groups the result in Remark 2.3.4.
This property was already observed by Looijenga in [4].
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3.3. Remark. The intersection product in the Chow ring satisfies
CHP(4); ® CHU( ), — CHP (ol ).

For p=d and p+ g=g+d with d < g, we have the decompositions CH¢(/)q =
D, _, CH (s CHI* (4 )q =D 5, CHI*?(sf);. Thus, the intersection product
of e(BYe CHY(f )y with any Z= 3" Z € CHY(/)q is actually given by

(e(B)-Z)=(e(B)- Zaa). (3.3.1)

3.4. Lemma. For an abelian scheme n:of — B as in 2.1, with dimB =1, we have
CH'(sf)q=CH" () @ CH' (), ® CH'(A),,
so CHY(l);=0 for s<0. Moreover,

CH'(s#), = n*Pic(B)o.

Proof. We use the exact sequence
0 — Pic®(#)— CH' (o) — NS(£)— 0
which implies that
CH'(f )q = Pic®(4 )q & NS(H# )q.
Since NS(o/)q C H*(o/,Q), the Néron-Severi group can be decomposed as follows:
NS(o4)q=NSo ®NS; ®NS;,  NS;=NS(#)o N H*(B,R'1xQ).
Hence NS; =0 for s <0. Using Remark 2.3.1 we find
NS, = Q4] =7"H?*(B,Q). (34.1)

Now we consider Pic(s/ )o. Let 7: /' — B be the dual abelian scheme. Then an
element of .«#*(B), the group of sections of 7, is an isomorphism class of line bundles L
on o/ with e*L 2 5 and whose restriction to each fiber of 7 is algebraically equivalent
to zero (see [3, p. 2]). Therefore, we have

Pic’(s )q C 4 (B)g ® n*Pic®(B)g
and this decomposition is stable under k*. We first show that
o'(B)g=A'(B)y@® L' (B), with k*Z, =k*Z,

for Z, € A*(B);.

Let L be a line bundle on & which corresponds to an element in .#’(B) and
whose class ¢;(L) € «#*(B)q satisfies ¢)(L); =0 for s =0, 1. The inclusion of a fiber
Ay of 7 into o/ is equivariant for multiplication by integers and CH'(43)q = CH'(4s)o
@ CH'(A4p);. Thus, the restriction of ¢;(L) to each fiber is trivial. Therefore L®",
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for some n>0, restricts to ¢, for all b€ B. By functoriality of «* (in particular,
(") = (43) =Pic®(4,)), the sections of t corresponding to L®" and ¢, must then
be the same. Therefore L®" (@, and thus ¢;(L)=0¢ o/'(B)q. We conclude that
oA(B)s=0if s #£0, 1.

Since mok=n we get k*n* =n*, hence

X e s — ~rrls gy
T I’IC(U)Q (G ) (S )2,

~
W
I
[\
~—

and the first result is proved.

Using the argument above, we just need to show n*Pic(B)q D CH' (), to get the
second result. The decomposition of CH'(./)q given above shows that CH () C
NS, ® n*Pic®(B)q. We already observed that NS; =n*H%(B,Q) C n*Pic(B)q. Thus,
the second result follows. O

4. The first proof
We need the following two lemmas.

4.1. Lemma. Let 7w:.o/ — B be an abelian scheme of relative dimension g over a
smooth projective curve B, with zero section e. Let L' be a relatively ample line
bundle satisfying e*L’' = Op.

Then there is a line bundle M € Pic(B) such that

axl =V ®cM,
where V is a vector space. In particular,

dim H(B,nxL'y=r dim H*(B,M) and c\(nxl’)=rci(M),
where r:=rk(nxL'), the rank of nsL'.

Proof. Note that nxL’ is a vector bundle, because L’ is relatively ample. The hypothesis
e*(L')= 0 is the “normalization condition” which implies that the vector bundle m«L’
is an antirepresentation of the group scheme %(L'), defined in [6, Section 6], which
generalizes the Heisenberg group. The lemma then follows directly from Proposition 2
in Section 6 of [6]. O

4.2. Lemma. Let n:f/ — B be an abelian scheme of relative dimension g over a
smooth complete curve B, with zero section e. Let L' be a relatively ample line
bundle with c;(L'Y=ci(L')o € CH' (4 )o. Then

degc\(nxLl')y= — (rknxL’/2) deg c1(w.8),

where Wy /B = det(e*(Qd/B)).
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Proof. The proof is obtained from the Grothendieck—Riemann—Roch Theorem (GRR):
ch(mL') =nx(ch(L') - 1d(Q%7%))

by considering k*L’ instead of L’. The computation below is copied from [5,
Appendice 2].

Since QU = n*e*(247%), where e*(Q%47%) is the Lie algebra bundle associated to

& — B, we can rewrite GRR:
ch(mL')=nx(ch(L")) - td(e* (QY%)).

Since L’ is relatively ample, we have m L' =n«L’. We only consider the codimension
0 and 1 parts of GRR:

rknseL' = nx(c1(L')/g!,
ei(mel) = ma(er(L'Y)/g! - er(@ffp))/2 + ma(er Ly /(g + ).
Substituting the first formula in the second gives
c1(mxL’) + (rkns L Yer(w.8))/2 = mx(er (LY /(g + 1. (4.2.1)

We will prove that both sides of (4.2.1) must be zero by showing that, upon replacing
L' by k*L', the Lh.s. of (4.2.1) is multiplied by k% but the r.h.s. by k%912,

For the Lh.s. note that also k*L’ is relatively ample with rkmsk™L’ = k?(rkn«L’)
and, since 74 kx = mx and kx k¥ =k%id,

ci(nxk* L) = ci(nxksk™*L') =k*c (n«L').
Hence
(rkmsck ™ L' Ye1(048)/2 + ci(msk ™ L'y = k¥ (rkns L Ye1(w.z/8)/2 + c1(nsL')).

Let us look now at the rh.s. The hypothesis c¢i(L')=c(L')y is equivalent to
Cl(k*L’)Zkzcl(Ll) S0

(KLY /(g + D! =K (e (L)) (g + 1)
as required. O

4.3. Theorem. Let n: o/ — B be an abelian scheme of relative dimension g over a
smooth projective curve B. Let e be the zero section and let L be a relatively ample
line bundle on . If

deg(cI(L)-e(B))<%deg ci(wyn), 4.3.1)

then L is not effective.
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Proof. Let c;(L)=c;(L)y+ci(L)1+c1(L), be the decomposition of ¢;(L) in CH!(/)g
with k*c (L); =k?ici(L); (so in particular (—1)*ci(L); =(—1)*"ci(L);). We define
the line bundle

Ls:=L®(-1)*"L.
The decomposition of ci(Lg) is
ciLs)o=2ci(Ls), callsh=0,  ci(Ls)r=2ci(L).
Thus, by Remark 3.3, it follows from the hypothesis (4.3.1) that
deg(ci(Ls) - e(B)) = deg(2¢1(L); - e(B)) < ydeg c1(@ayp). (4.3.2)

On the other hand, if Lg is not effective, i.e. H%(#,Ls) =0, then H%(+/,L)=0, i.e. L
is not effective, so we just need to show that Lg is not effective.
We now consider the line bundle L’ on & defined by

L'=Ls®n*e*LS".

It satisfies e*L’ = (5. Moreover, since L is relatively ample, so are Lg and L'. We
show that ¢ (L") =c1(L'), =0.

Note that ¢;(n*e*L;') € n*Pic(B)g=CH'(f); (by Lemma 3.4), thus ci(L');=
ci(Ls); for i=0,1. Therefore also c;(L’); =0. Moreover, writing ci(ls), =n*D
with D € Pic(B) we have, using Remark 3.3 and the projection formula

e*Ls =n«(c1(Ls) - e(B)) = nx(c1(Ls)z - e(B)) = D.

Thus, n*(e*Ls)=ci(Ls), and so ¢;(L'), =0.
We have to show H(,Ls)=0. Using Ly =L @ n*e*Ls we have

Hot,Ls)=HB,nx(L' @ n*e*Ls)) = H(B, (nxL') ® * Ls).
Applying Lemma 4.1 to L’ we get n«Ll' =V @cM and
HYo,Ls)=V QH'(B,M ®e*Ls) with c;(nsL')=r-c;(M).
Using deg(e*Ls) = deg(ci(Ls) - e(B)) and
deg(ci(nxL')) = — (r/2) deg(ci(w8))
(Lemma 4.2), we find that the degree of the line bundle M ® e*Ls on B is
deg(M ® *Ls) = — }deg(c1(wp)) + deg(ci(Ls) - e(B)),

hence H(#,Ls)=0 if deg(cl(LS)-e(B))<%deg(cl(wd/B)). O

4.4, Corollary. Let n:.o/ — B be a non-isotrivial family of abelian varieties of relative
dimension g, over a smooth projective curve B, and L a relatively ample line bundle.
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If L is effective then for any curve C in o/
deg(ci(L)-C)>0.
Proof. If C C Ay, a fiber of m, the statement is true because L, is ample. If not,

7 restricts to a surjective map C — B. Let C be the desingularization of C and let
p:C — B be the map induced by 7. Let /) :=.o/ x5 C be the base change:

sty ——s o

¢ ——B.

Then 7; has a tautological section e. Defining e to be the zero section, = : .o/ — C is
an abelian scheme. We have

deg(ci(P*L) - e(C))=degp,(p*ci(L)- e(C))=deg(c1(L)- C).

Note that if L is relatively ample and effective then so is §*L. Now we apply
Theorem 4.3 to p*L and obtain

deg(ci(*L)- e(C)) >0,
since deg(ci(wy, /C~))>0 because 7, and thus 7y, is not isotrivial. [
4.5. Corollary. Let n:.o/ — B be a non-isotrivial family of abelian varieties of relative
dimension g over a smooth projective curve B. Let % be an effective relatively ample

divisor on of and let C be a curve on .
Then

CNFE0D. (4.5.1)
Proof. The statement is weaker than the one in Corollary 4.4. O

4.6. Corollary. Let n: .o/ — B be a non-isotrivial family of abelian varieties of relative
dimension g over a smooth projective curve B, whose general fiber is simple. Let
X\ (resp. &2) be an effective cycle of codimension p (resp. g+ 1 — p) not contained
in a fiber. Then

deg(fl’l - %)>0.
Proof. After a change of base we may assume that 7 is an abelian scheme (see the
proof of Corollary 4.4). The condition deg(Z - 272)>0 is equivalent to

deg((21 * (—1)* Z,) - e(B)) >0,

where x is the Pontryagin product.
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By construction, the divisor 2 * (~1)*%, is effective and is not contained in a
union of fibers. Under base change the general fiber does not change and effective
divisors on simple abelian varieties are ample. By a rigidity argument it follows that
% * (=1)* 2, is relatively ample. Thus, the result follows from Corollary 4.4. [

5. The second proof

51. Let n: o/ — B and &, C C ./ be as in Corollary 4.5.

If C is contained in a fiber 4, :=n~!(b) for some b € B the resuit follows since &
is relatively ample.

Otherwise, as in the proof of Corollary 4.4, we obtain an abelian scheme (which
we again denote by 7:.e/ — B) with zero section e and an effective, relatively ample
divisor (again denoted by &) and we must show that e(B) N #£ 0.

5.2. We show that we only need to consider the case in which the fiber 4, of =, for
b € B general, is simple.
In fact, if this is not the case, there is a finite map p:B’ — B and a diagram

p
J”TXB/g———MRf

B —p——>B

where F xp 9 is the fiber product of two families of abelian schemes of relative
dimensions f and g — f and § is surjective. We may assume that &% — B’ is non-
isotrivial with simple general fiber.

Let ez and ey be the zero sections of ¥ and ¥%, then e:=(eg,es) is the zero
section of # xp %. We have

ZNe(B') ifand only if p*#Ne'(B)#0.
We have the canonical inclusion
iz ' FSF xXpes(BYCF xp¥.
Note that ifp* % is an effective relatively ample divisor on &#. Moreover,
izp*ZNex(B)=iz(p*ZNe(B))=izp" (ZNeB)),
hence it suffices to show that i} 5*Z Neg(B')#0D.

53. If e(B)C %, e(BYNZ =e(B)#0, otherwise e(B)NZ is a (finite) set of points.
Since the cycles involved are effective, we must prove that

deg(Z - e(B))>0.
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We show that our result follows from Proposition 5.4 below. By Remark 2.3.4 we
have

deg(Z -e(B))>0 if and only if deg(Z - [n])>0, (53.1)

where /[n] is the cycle of n-torsion points.

Note that .&/[n] could have several irreducible components and some of them could
be contained in &, so the computation of the intersection number can be difficult. How-
ever, we may assume that the fiber 4, of n, for b € B general, is simple (see 5.2). In
particular, & N4, does not contain a translate of an abelian subvariety. A fundamental
theorem of Raynaud [7] then shows that the number of the torsion points contained in
F N A, is finite, i.e.

card(Z NAP") < oo.

In particular, the number of components of the torsion locus contained in Z is finite.

Now Proposition 5.4 asserts that there are infinitely many » such that /{n]NZ is
non-empty. Therefore, there are still infinitely many » for which «/[n]NZ is a finite
number of points. Since the cycles involved are effective one has deg(Z - «/[n])>0
for such n, hence deg(Z - e(B)) >0 by (5.3.1).

5.4. Proposition. Let n:.5/ — B be a non isotrivial abelian scheme over a smooth
projective curve B, with simple general fiber. Let & be an effective divisor on .
Then there exists an infinite subset I of N such that

FNAM£D forall nel

Proof. By definition
o =R'nsC/(F' @R 14Z),

where R« Z is the local system with (R'm«Z), = H'(4,,Z) corresponding to the first
derived functor, R!n+K =R'7+Z ® K, for K =Q, R, C, the associated K vector bundle
and &' is the Hodge bundle. Over a point b this is just the definition of abelian variety
Ay = H' (45, ©)(H"(4,) ® H' (43, Z)).

Moreover, there is a ¥>° isomorphism

o ~R'n«R/R' 1+ Z

corresponding to the isomorphism H1(4s,R) >~ H!(4,, C)/H"%(4;). So we have the
diagram

R'msRe—— S R'1:C

\ / (5.4.1)
Ag Ac
o

where Az an Ac are the projections. Note that, by construction, A5Z = A%Z N R'n«R.
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Let U be a contractible open neighborhood of a general point by € B. Then over U
we have the following trivializations:
Pp:R'm4R — H'(4p,,R) x U and ¥¢:R'14C 5 H'(4,,,C) x U.
We denote by p; (any of) the projections onto the first factor. Then we have the maps
g := p P : R'nsR — H'(45,,R)
and
&c:= p¥c:R'nxC — H'(4p,,C).

Clearly ¥¢c, @¢ are holomorphic, while ¥z, ®r are €. We denote by Z% (resp.
Zc) the restriction to U of the pullback A2 (resp. AZZ) and g ;:= A%(Z NA4p)
and Zcp:=A5(Z N4p). By (5.4.1) it follows that

Br(ZR) = Pc(Zc)NH' (4p,, R).

The proposition follows from the fsllowing claim.

Claim, ®z(Z%) contains an open subset of the vector space H'(Ap,,R).

Indeed, the claim implies that ®r(Zr)NH'(4p,,Q) contains an open subset of
H'(Ap,,Q). Since H'(Ap,,Z) is discrete in H'(Ap,,Q), this means that & intersects an
infinite number of torsion points of ./ (these torsion points are (P(Zr) N H'(4p,Q))/
HY (4, 7).

To prove the claim we note that dimg 2% = dimg H'(45,R)=2g. Thus, we just
need to prove that the differential of &g, has maximal rank 2g somewhere. First we
will check this rank condition for the holomorphic map D¢z, and later we will see
that this implies the real case.

We will argue by contradiction. If the rank of ®¢ 4. is no where maximal, then all
the fibers of ®@cj4. have positive dimension. Since dime @c(Zcp)=2g9 — 1
for all b€ U, all the ¢, have the same image, i.e.

g’c(gc)z QDC(gC,bO) x U= gC,bo x U.

Since &7 is not isotrivial, the vector bundle 5°'| }J is not flat. In particular,
Po(Pc(Fy N #0,

with po; : H'(44,,C)— H 1’O(A',,O) the projection, so we can find a vector space
W Coc(Fy) with pn(W)#0.

Take now zy € Z¢ s, and let Z:= l;F’C_l(zo x U), a section of Z¢. Since Ag‘ic(Z(b)) =
Z(b) + H“O(4p) + H'(4;,Z), the translate

17y = {2(b) + H"*(4p)}sev
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is contained in Z.. So
20+ W Cz0 + Bc(Fy) = Bc(1:7,) C Bc(Zep) = Zcn,-

This means that the analytical subvariety Zc 5, of H'(Ap,, C) contains the affine space,
2o + W, and poi(zo + Wo) #0.

Then Ac(zo+ W) C A, is not a point, so its closure has to be a positive dimensional
torus, contained in & NAp,. But this torus has an infinite number of torsion points.
Hence Raynaud’s theorem, which we recalled in 5.3, would imply that & N 4,, contains
the translate of an abelian variety, in contradiction with the hypothesis that 4, is
simple.

Now we prove the rank condition for &g 4. We know that the locus where the
rank of &¢|x, drops is a complex subvariety Sing(@c|z.). If the differential of @4,
has nowhere maximal rank, then ®x(Zx) C Dc(Sing(Pcy2,))NH 1(4;,R). Moreover,
the fibers of ®g,, must have positive dimension. Thus, they will be in an union
D of irreducible components of Sing(®Pc|.) where also @)z, has fibers of positive
dimension. Then, in particular, dim¢ @c(D) <2g—1. So dimg Pr(Zr) <2g—1, because
the real part of a complex analytical variety of complex dimension # has real dimension
< n. Then dimg $p(Zr) = dimg Pr(Zr,)=2g — 2, for all & U. But this implies that
the real parts of the images by @¢ of % are the same for all b€ U, so these images
must be equal and we saw above that this is impossible. O
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